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� Require high power and broadband
••••• To address general needs of Navy

� Consider PMN-driven projector
••••• Staves of butted Class IV flextensional shells
••••• Array composed of multiple staves

� Projector arrays within tow body
••••• Fiberglass/metal structures surround arrays

Why 3D Time-Domain Modeling?
� Exhaustive prototype testing costs much more than

� Time-to-deployment is critical

� Valuable for test interpretation and planning

Radiated acoustic field from a flextensional array sonar projector in a 2x2 m cube of water
(upper half removed for viewing).  An absorbing boundary condition effectively passes
sound out of the model with negligible reflection. Drive signals to each flextensional trans-
ducer are phased to project the principal beam out the left front face.

SONAR PROJECTOR APPLICATIONS Projector Issues
� Need to explore and understand:

••••• Nonlinear PMN drive behavior

••••• Broadband stave response

••••• 3D acoustical coupling between staves

••••• Effects of tow body

••••• Overall design and integration

Modeling Justification
� PZFlex modeling software validated

••••• Have reasonable confidence in results
♦♦♦♦♦ i.e. appreciate uncertainties and limits

� Hardware makes large-scale models feasible
••••• 2,4, or 8 processor PCs

♦♦♦♦♦ parallel processing

� Greatest impact when modeling used at beginning of
design process

numerical simulations



NUWC measurements of Young’s modulus
Y versus electric field bias in PMN at vari-
ous temperatures.

Hom-Shankar constitutive model fits to
NUWC polarization and strain data at
0,6,9 ksi prestress, 20oC.
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Flextensional shell mode shapes at principal resonances calculated in air.  All frequencies
are within 1.5% of Lockheed Martin acceleromoter measurements.

Static shell displacement across the minor shell axis due to bias voltage: comparisons of
Lockheed Martin measurements and PZFlex simulations.

� NUWC measurements of PMN
••••• Very low frequency data available

♦♦♦♦♦ Lynn Ewart, et.al: Underwater Transducer Materials Resource

� Dynamic data forthcoming
♦♦♦♦♦ Elizabeth McLaughlin’s Sonar Frequency Characterizaton Rig

� Hom & Shankar’s tanh model for PMN
••••• Reasonable fit to low frequency data
••••• Robust model offers further opportunities

♦♦♦♦♦ adding hysteresis but not necessary at present

� Validation against Lockheed Martin data
••••• Shell vibration modal frequencies
••••• Shell-stack displacement due to static bias

Constitutive Data, Model & Validation



0.6 0.8 1.0 1.2 1.4

Experimental Response
PZFlex Response
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Experimental Response
PZFlex Prediction
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Comparison of measured and simulated admittance
in water for the 2-shell stave with cable.

Comparison of measured and simulated TVR in
water for the 2-shell stave.

Comparison of measured and simulated TVR in
water for the 12-shell stave.

Stave shape at mid band, showing maximum exten-
sion and compression in fundamental mode.

Stave shape at high band, showing maximum
extension/compression in half model. Nonuniform
shell response can be seen along stave.

Stave Response Validation
� Seneca Lake stave tests

� Two-shell and twelve-shell data

� Comparisons of admittance and TVR
� Differences: 13% admittance; 1-2dB TVR

� Uniform mode shapes in mid band
� Nonuniformity in high band

� Cable analyses by Jim Griffith (E&H Resources,
Inc., Phoenix)

Conclusions
� PMN stave modeled reasonable well

� Always room for improvement
♦♦♦♦♦ high frequency PMN data will help

� Confidence in overall system models
� Multi-stave arrays with electronics
� Arrays in 3D tow body

� PZFlex to be installed at NUWC
� Facilitate modeling earlier in system cycle
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Tow Body Effects
� Preliminary 2D study of fiberglass shell

� Insertion loss and flexural (Lamb)
waves

� Using measured anisotropic
properties

� Insertion loss minimal
� 5-10%, increasing with thickness

� Lamb waves can modulate transmission
� Depends on joint design
� Compare transmitting and free joint
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Comparison of propagation through fiberglass tow body with and without joint in shell (at top of snapshot).
Half on left is without joint (transmitting) and half on right is with free joint.  Exterior water boundaries
transmit waves out of model.  Lower curves show pressure sprectrum (left) and insertion loss vs angle (right).
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